Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS

12.10.2014 19:41


Vznik tzv. bílých slunečních erupcí, tedy takových, které se projevují zjasněním v široké oblasti spektra, není stále ještě uspokojivě vysvětlen. Není zřejmé, jak souvisí výskyt bílé erupce s jinými vlastnostmi (např. intenzitou rentgenové emise) erupcí, a dokonce není uspokojivě ani vysvětleno, v jaké oblasti sluneční atmosféry vlastně vzniká ona širokopásmová emise. Petr Heinzel a Lucia Kleint využili výjimečných pozorování z kosmického spektrografu IRIS (Interface Region Imaging Spectrograph) a publikovali zevrubnou analýzu zvýšení úrovně Balmerovského kontinua v blízké ultrafialové oblasti spektra.

Ohledně vzniku slunečních erupcí jsou sluneční fyzikové víceméně za jedno: erupce jsou důsledkem přepojení (rekonexe) magnetických siločar v koronálních strukturách (např. v koronálních smyčkách nebo ve vysoko se vypínajících filamentech), do nichž je nějakým mechanismem (nejspíše náhodnými pohyby ve fotosféře) ukládána energie. Konfigurace magnetického pole se komplikuje a jakmile dojde k překročení určité hranice, nahromaděná energie se náhle uvolní ve formě tvrdého elektromagnetického záření, částicových svazků a často bývá erupce doprovázena i výronem koronální hmoty do meziplanetárního prostoru.

Jsou to právě elektronové svazky šířící se vysokou rychlostí do nižších vrstev atmosféry, které jsou odpovědné za srážkovou excitaci a ionizaci pozaďové atmosféry, její ohřev a vznik emise ve spektrálních čarách i v kontinuu. Nejčastěji při erupcích pozorujeme emisi ve spektrálních čarách vodíku (sem patří známá Hα červené oblasti spektra) nebo vápníku, která má obvykle tvar dvou vláken, která se od sebe v průběhu erupce vzdalují. Pro širokopásmovou emisi v kontinuu (pokud tuto pozorujeme, mluvíme o bílé erupci) existují v současnosti dva modely. Buď by mohlo jít o tepelné záření způsobené nárůstem teploty až ve fotosféře, což by znamenalo velmi silné částicové svazky pronikající až do těchto hloubek. A nebo by mohlo jít o rekombinaci vodíku vznikající v chromosféře. Matematické modely poukazovaly na oblast tzv. Balmerova kontinua, kde se předpovědi obou modelů výrazně liší.

Balmerovo kontinuum najdeme ve spektru v blízké ultrafialové oblasti na vlnových délkách kratších než 364,6 nm a souvisí s vyzářením energie volného elektronu, který je zachycen protonem, u něhož se uhnízdí na druhé energetické hladině. Tuto spektrální oblast je velmi obtížné pozorovat ze Země, neboť těsně za ní končí atmosférické okno průhlednosti. Petr Heinzel z AsÚ a Lucia Kleint ze Švýcarska (Lucia má mimochodem české kořeny a česky i dobře mluví) využili jedinečných pozorování ze zobrazujícího spektrografu IRIS (NASA), jež se nachází v kosmickém prostoru a není tedy omezen atmosférickými okny průhlednosti.

Studovali konkrétně erupci třídy X1, jež vzplanula v centrální oblasti slunečního disku 29. března 2014 a maxima dosáhla v 17.48 světového času. Tato erupce patří mezi ty vůbec nejlépe popsané, neboť byla sledována současně dvanácti různými přístroji z kosmu i ze Země. Právě spektrograf IRIS přinesl důležité svědectví o dění v oblasti Balmerova kontinua.

Ze spekter pořízených IRISem vyplývá, že Balmerovo kontinuum bylo v případě této erupce zvýšeno o asi 200 % v oblastech odpovídajících pozici vláken erupce. Předběžně se zdá, že místa s emisí v kontinuu dobře odpovídají i pozicím tvrdé rentgenové emise pozorované z družice RHESSI. Podle předběžné interpretace tohoto pozorování, publikované formou Letter v the Astrophysical Journal, svědčí toto pozorování o emisi v opticky tenkém kontinuu vznikající v chromosféře, v souladu s modelem vzniku bílých erupcí uvedeným nahoře jako druhým v pořadí. Konkurenční model, tedy srážkový ohřev fotosféry, se však z těchto pozorování vyloučit nepodařilo, přestože tvar zvýšeného kontinua je spíše v souladu s rekombinací vodíku ve chromosféře než s nárůstem intenzity v dalekých křídlech čar ionizovaného hořčíku, která v této oblasti spektra dominují. Daleká křídla čar se formují ve fotosféře a jejich zvýšení by naopak svědčilo pro konkurenční model.

K rozhodnutí mezi oběma modely je zapotřebí mimo jiné detailně modelovat hydrodynamiku sluneční atmosféry s realistickým přenosem záření se zahrnutím spektrálních čar i mnohých dalších kovů. Publikovaná práce však poukazuje na velký diagnostický potenciál blízké ultrafialové oblasti pro pochopení dějů probíhajících ve slunečních erupcích. Práce vzbudila velký zájem komunity slunečních fyziků a byla vybrána jako tzv. RHESSI Science Nugget #237, tedy do jakéhosi zlatého výběru vědeckých výsledků dosažených s využitím pozorování z družice RHESSI.
 

Reference: Heinzel, P. a Kleint, L., Hydrogen Balmer Continuum in Solar Flares Detected by the Interface Region Imaging Spectrograph (IRIS), Astrophysical Journal Letters (2014) in press, arXiv:1409.5680
Kontakt: prof. RNDr. Petr Heinzel, DrSc., pheinzel@asu.cas.cz

Převzato z webu Astronomického ústavu AV ČR.